Derived Algebraic Geometry X: Formal Moduli Problems
ثبت نشده
چکیده
1 Deformation Theories: Axiomatic Approach 8 1.1 Formal Moduli Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 1.2 The Tangent Complex . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 1.3 Deformation Theories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 1.4 Digression: The Small Object Argument . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 1.5 Smooth Hypercoverings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
منابع مشابه
Derived Algebraic Geometry XIII: Rational and p-adic Homotopy Theory
1 Rational Homotopy Theory 4 1.1 Cohomological Eilenberg-Moore Spectral Sequences . . . . . . . . . . . . . . . . . . . . . . . . 5 1.2 k-Rational Homotopy Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 1.3 Rational Homotopy Theory and E∞-Algebras . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 1.4 Differential Graded Lie Algebras . . . . . . . . . . ...
متن کاملGrothendieck's Existence Theorem in Analytic Geometry and Related Results
We state and prove several kinds of analytification theorems of formal objects (such as coherent sheaves and formal complex spaces) which are in the spirit of Grothendieck's algebraization theorem in [EGA, III]. The formulation of the results was derived from deformation theory and especially M. Artin's work on representability of functors. The methods of proof depend heavily on a deeper study ...
متن کاملModuli Problems in Derived Noncommutative Geometry
Moduli Problems in Derived Noncommutative Geometry Pranav Pandit Tony Pantev, Advisor We study moduli spaces of boundary conditions in 2D topological field theories. To a compactly generated linear∞-category X , we associate a moduli functor MX parametrizing compact objects in X . Using the Barr-Beck-Lurie monadicity theorem, we show that MX is a flat hypersheaf, and in particular an object in ...
متن کاملHYPERTRANSCENDENTAL FORMAL POWER SERIES OVER FIELDS OF POSITIVE CHARACTERISTIC
Let $K$ be a field of characteristic$p>0$, $K[[x]]$, the ring of formal power series over $ K$,$K((x))$, the quotient field of $ K[[x]]$, and $ K(x)$ the fieldof rational functions over $K$. We shall give somecharacterizations of an algebraic function $fin K((x))$ over $K$.Let $L$ be a field of characteristic zero. The power series $finL[[x]]$ is called differentially algebraic, if it satisfies...
متن کاملAlgebraic groups and moduli theory
These are notes from the course Algebraic Geometry III. We work over a field of characteristic zero. We start by doing some basic representation theory. Then we introduce algebraic groups. Then we study representations of algebraic groups. Finally we apply this to moduli problems.
متن کامل